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第一部分 Rn 的拓扑

1 度量空间，n 维 Euclid 空间
把多个元素放在一起就构成了集合，但是集合间的元素是松散的. 我们还需要定义集合

的元素之间的“关系”或“结构”，有了这层“关系”或“结构”，就构成了一个空间.

定义 1 (度量空间). 设 X 是一个集合，若对于 X 中任意两个元素 x, y，都有唯一确定的实

数 d(x, y) 与之对应，而且这一对应关系满足下列条件：

1. d(x, y) ⩾ 0，当且仅当 x = y 时等号成立；

2. d(x, y) ⩽ d(x, z) + d(y, z)，对任意 z 都成立，

则称 d(x, y) 是 x, y 之间的距离，称 (X, d) 为度量空间或距离空间.X 中的元素称为点，条件
(2) 称为三点不等式.

注. 距离 d 有对称性，即 d(x, y) = d(y, x). 事实上，在三点不等式中取 z = x，则

d(x, y) ⩽ d(x, x) + d(y, x) = d(y, x).

由于 x, y 的次序是任意的，同理可证 d(y, x) ⩽ d(x, y)，这就得到 d(x, y) = d(y, x).

注. 如果 (X, d) 是度量空间，Y 是 X 的一个非空子集，则 (Y, d) 也是一个度量空间，称为

X 的子空间.

定义 2 (n 维 Euclid 空间). 设 n 是一个正整数，将由 n 个实数 x1, x2, · · · , xn 按确定的次序

排成的数组 (x1, x2, · · · , xn) 的全体组成的集合记为 Rn，对 Rn 中任意两点

x = (ξ1, ξ2, · · · , ξn), y = (η1, η2, · · · , ηn),

规定距离

d(x, y) =

√√√√ n∑
i=1

(ξi − ηi)2.

容易验证 d(x, y) 满足距离的条件. 将 (Rn, d) 称为n 维 Euclid 空间，其中 d 称为 Euclid 距
离.

注. 对 d(x, y) 满足距离的条件的验证：首先，条件 (1) 显然成立，对于条件 (2)，由 Cauchy-
Schwarz 不等式 (

n∑
i=1

aibi

)2

⩽
(

n∑
i=1

a2i

)(
n∑

i=1

b2i

)
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得到

n∑
i=1

(ai + bi)
2 =

n∑
i=1

a2i + 2
n∑

i=1

aibi +
n∑

i=1

b2i

⩽
n∑

i=1

a2i + 2

√√√√ n∑
i=1

a2i ·
n∑

i=1

b2i +
n∑

i=1

b2i

=

√√√√ n∑
i=1

a2i +

√√√√ n∑
i=1

b2i

2

.

令 z = (ζ1, ζ2, · · · , ζn)，ai = ζi − ξi，bi = ηi − ζi，则

ηi − ξi = ai + bi.

代入上面不等式即为三点不等式.

此外，在 Rn 中还可以用下面的方法定义其他的距离：

ρ(x, y) =
n∑

i=1

|ξi − ηi|.

容易验证 ρ 也满足条件 (1) 和条件 (2).（称 ρ 为 Manhattan 距离）由此可知，在一个集合
中引入距离的方法可以不限于一种. 之后我们仅讨论 n 维 Euclid 空间和 Euclid 距离 d(x, y).

下面我们将考察 Rn 中的极限、开集、闭集、紧集等一系列概念，它们的基础都是邻域，

而邻域仅依靠距离即可作出. 本章的结论对于一般的度量空间也是成立的，之后在泛函分析
的学习中还会涉及.
我们从定义邻域的概念开始.

定义 3 (邻域). Rn 中所有和定点 P0 的距离小于定数 δ(> 0) 的点的全体，即集合

{P |d(P, P0) < δ}

称为点 P0 的 δ 邻域，记作 U(P0, δ).P0 称为邻域的中心，δ 称为邻域的半径. 在不需要特别
指出是怎样的一个半径时，也干脆说是 P0 的一个邻域，记作 U(P0). 显然，在 R，R2，R3

中的 U(P0, δ) 就是以 P0 为中心，δ 为半径的开区间，开圆和开球.

容易证明邻域具有下面的基本性质：

性质 1. 1. P ∈ U(P )；

2. 对于 U1(P ) 和 U2(P )，存在 U3(P ) ⊂ U1(P ) ∩ U2(P )；

3. 对于 Q ∈ U(P )，存在 U(Q) ⊂ U(P )；
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4. 对于 P ̸= Q，存在 U(P ) 和 U(Q)，使 U(P ) ∩ U(Q) = ∅.

定义 4 (极限). 设 {Pn} 为 Rm 中一点列，P0 ∈ Rm，如果当 n → ∞ 时有 d(Pn, P0) → 0，则

称点列 {Pn} 收敛于P0. 记为 lim
n→∞

Pn = P0 或 Pn → P0(n → ∞).

注. 用邻域的术语来定义 {Pn} 收敛于 P0：对于 P0 的任一邻域 U(P0)，存在某个自然数 N，

对任意 n > N，都有 Pn ∈ U(P0).

定义 5 (点集的距离). 两个非空点集 A,B 的距离定义为

d(A,B) = inf{d(x, y)|x ∈ A, y ∈ B}.

注. 特别地，当其中一个点集为单点集时，我们就定义了点与点集的距离.

定义 6 (点集的直径). 一个非空点集 E 的直径定义为

δ(E) = sup
P,Q∈E

d(P,Q).

定义 7 (有界点集). 设 E 是 Rn 中一点集，若 δ(E) < ∞，则称 E 为有界点集.

注. 空集也作为有界点集.

注. 显然，E 为有界点集的充要条件是存在常数 K > 0，使对于所有的 x = (x1, x2, · · · , xn) ∈
E，都有 |xi| ⩽ K(i = 1, 2, · · · , n). 这等价于：存在 K > 0，对所有 x ∈ E，都有 d(x, 0) ⩽ K，

这里 0 = (0, 0, · · · , 0)，称为 n 维 Euclid 空间的原点.

定义 8. 点集 {(x1, x2, · · · , xn)|ai < xi < bi, i = 1, 2, · · · , n}称为一个开区间（n维），若将其

中不等式一律换成 ai ⩽ xi ⩽ bi, i = 1, 2, · · · , n，则称之为一个闭区间. 类似地，我们还可以
定义左开右闭区间、左闭右开区间. 当上述各种区间无区别的必要时，统称为区间，记作 I.
把 bi − ai(i = 1, 2, · · · , n) 称为 I 的第 i 个“边长”，

n∏
i=1

(bi − ai) 称为 I 的“体积”，记为 |I|.

2 内点，界点，聚点

定义 9 (内点，外点，界点). 如果存在 P0 的某一邻域 U(P0)，使 U(P0) ⊂ E，则称 P0 为 E

的内点. 如果 P0 是 Ec 的内点，则称 P0 是 E 的外点. 如果 P0 既非 E 的内点又非 E 的外

点，也就是说 P0 的任一 邻域既有属于 E 的点，又有不属于 E 的点，则称 P0 为 E 的界点

或边界点.

注. 上述三个概念中当然以内点最为重要，因为其他两个概念都是由此派生出来的.

定义 10 (聚点). 设 E 是 Rn 中一点集，P0 为 Rn 中一定点，如果 P0 的任一邻域内都含有

无穷多个属于 E 的点，则称 P0 为 E 的一个聚点.
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注. 由聚点定义可知有限集没有聚点.

定理 1. 下面三个陈述是等价的：

1. P0 是 E 的聚点；

2. 在 P0 的任一邻域内，至少含有一个属于 E 而异于 P0 的点；

3. 存在 E 中互异的点所成点列 {Pn}，使 Pn → P0(n → ∞).

显然 E 的内点一定是 E 的聚点，但 E 的聚点不一定是 E 的内点，还可能是 E 的界

点. 其次，E 的内点一定属于 E，但 E 的聚点可以属于 E 也可以不属于 E.

定义 11 (孤立点). 设 E 是 Rn 中一点集，P0 为 Rn 中一定点，如果 P0 属于 E 但不是 E 的

聚点，则 P0 称为 E 的孤立点.

注. 由定理1可知，P0是 E 的孤立点的充要条件是：存在 P0的某邻域 U(P0)，使得 E∩U(P0) =

{P0}. 由此又知，E 的界点不是聚点就是孤立点.

综上所述，所有 Rn 中的点，对 E 来说可以分为内点、界点、外点或分为聚点、孤立点、

外点. 但是，对一个具体的点集 E 来说，以上两种分类的三种点不一定都出现. 界点和聚点
可以属于 E，也可以不属于 E.

根据上面引入的概念，对于一个给定的点集 E，我们可以考虑上述各种点的集合，其中

最重要的是下面四种.

定义 12. 设 E 是 Rn 中的一个点集，有

1. E 的全体内点所成的集合，称为 E 的开核，记作 E̊.

2. E 的全体聚点所成的集合，称为 E 的导集，记作 E ′.

3. E 的全体界点所成的集合，称为 E 的边界，记作 ∂E.

4. E ∪ E ′ 称为 E 的闭包，记作 E.

它们都可以用集合的语言描述如下.

1. E̊ = {x|∃ U(x) ⊂ E};

2. E ′ = {x|∀ U(x), U(x) ∩ E\{x} ̸= ∅};

3. ∂E = {x|U(x) ∩ E ̸= ∅且U(x) ∩ Ec ̸= ∅};

4. E = {x|∀ U(x), U(x) ∩ E ̸= ∅}.
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注. 由 (4) 可以看出，闭包就是包含 E 的内点、界点、聚点、孤立点（可能会有重合）而只

不含 E 的外点的集合.

注. 由 (4) 还可得到

E = E ∪ ∂E = E̊ ∪ ∂E = E ′ ∪ {E的孤立点}

以及闭包与内核的对偶关系

(E̊)c = Ec, (E)c = E̊c.

定理 2. 设 A ⊂ B，则 A′ ⊂ B′, Å ⊂ B̊, A ⊂ B.

定理 3. (A ∪B)′ = A′ ∪ B′.

证明. 因为 A ⊂ A ∪ B, B ⊂ A ∪ B，故从定理2可知，A′ ⊂ (A ∪ B)′, B′ ⊂ (A ∪ B)′，从而

A′ ∪ B′ ⊂ (A ∪B)′.

另一方面，假设 P ∈ (A ∪ B)′，则必有 P ∈ A′ ∪ B′. 即 (A ∪ B)′ ⊂ A′ ∪ B′. 否则，若
P /∈ A′ ∪B′，那么将有 P /∈ A′ 且 P /∈ B′.因而有 P 的某一邻域 U1(P )，在 U1(P )内除 P 外

不含 A 的任何点，同时有 P 的某一邻域 U2(P )，在 U2(P ) 内除 P 外不含 B 的任何点，则

由邻域的基本性质 (2) 知，存在 U3(P ) ⊂ U1(P ) ∩ U2(P )，在 U3(P ) 中除点 P 外不含 A ∪B

中的任何点，这与 P ∈ (A ∪ B)′ 的假设矛盾.

定理 4 (Bolzano-Weierstrass 定理). 有界无限点集至少有一个聚点.

证明方法同数学分析中 R 和 R2 时的证明，在此不再赘述.

定理 5. 设 E ̸= ∅, E ̸= Rn，则 E 至少有一界点（即 ∂E ̸= ∅）.

证明. 设 P0 ∈ E, P1 ∈ Ec，定义 Pt = (1 − t)P0 + tP1, t ∈ [0, 1]. 设 t0 = sup{t|Pt ∈ E}. 下
证 Pt0 ∈ ∂E.

若 Pt0 ∈ E，则 t0 ̸= 1. 对任意 t ∈ (t0, 1]，Pt /∈ E. 对任意 δ > 0，存在 t ∈ (t0, 1]，使得

Pt ∈ Ec ∩ U(Pt0 , δ)，于是 Pt0 ∈ ∂E.
若 Pt0 ∈ Ec，即 Pt0 /∈ E，则 t0 ̸= 0. 存在 tn ∈ [0, t0) , tn → t0，且 Ptn ∈ E. 对任意

δ > 0，存在 Ptn ∈ E ∩ U(Pt0 , δ). 因 Pt0 ∈ U(Pt0 , δ) ∩ Ec，于是也有 Pt0 ∈ ∂E.

3 开集、闭集、紧集、完备集

定义 13 (开集). 设 E ⊂ Rn，如果 E 的每一点都是 E 的内点，则称 E 为开集.

例如整个空间 Rn 是开集，空集是开集，在 R 中任意开区间 (a, b) 是开集，在 R2 中

E = {(x, y)|x2 + y2 < 1} 是开集（但它在 R3 中就不是开集了，想想看，这是为什么？）.
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定义 14 (闭集). 设 E ⊂ Rn，如果 E 的每一个聚点都属于 E，则称 E 为闭集.

例如整个空间 Rn 是闭集，空集是闭集，在 R 中任意闭区间 [a, b] 是闭集，任意的有限

集合都是闭集.
开集、闭集利用开核、闭包等术语来说，就是

E 为开集 ⇐⇒ E ⊂ E̊，即 E = E̊.
E 为闭集 ⇐⇒ E ′ ⊂ E(或 ∂E ⊂ E).

今后开集常用字母 G 表示，闭集常用字母 F 表示.

定理 6. 对任何 E ⊂ Rn，E̊ 是开集，E ′ 和 E 都是闭集.（这也是 E̊ 称为开核，E 称为闭包

的缘由）

证明. 首先证明 E̊ 是开集. 设 P ∈ E̊，由 E 的定义知，存在邻域 U(P ) ⊂ E，对于任意的

Q ∈ U(P )，由邻域的基本性质 (3) 知，存在 U(Q) 使得 U(Q) ⊂ U(P ) ⊂ E，即 Q 是 E 的

内点，故 U(P ) ⊂ E̊，所以 P 是 E̊ 的内点，故 E̊ 是开集.
其次证明 E ′ 是闭集. 设 P0 ∈ (E ′)′，则由定理1(2) 可知，在 P0 的任一邻域 U(P0) 内，

至少含有一个属于 E ′ 而异于 P0 的点 P1.因为 P1 ∈ E ′，于是又有属于 E 的 P2 ∈ U(P0)，而

且还可以要求 P2 ̸= P0，再次利用该定理，即得 P0 ∈ E ′. 所以 E ′ 是闭集.
最后证明 E 是闭集. 由闭包的定义及定理3，有

(E)′ = E ′ ∪ (E ′)′ ⊂ E ′ ∪ E ′ = E ′ ⊂ E.

从而 E 是闭集.

定理 7 (开集与闭集的对偶性). 设 E 是开集，则 Ec 是闭集；设 E 是闭集，则 Ec 是开集.

证明. 只需证明第一部分.
证法一：设 E 是开集，而 P0 是 Ec 的任一聚点，那么，P0 的任一邻域都有不属于 E

的点. 这样 P0 就不可能是 E 的内点，从而不属于 E（因为 E 是开集），也就是 P0 ∈ Ec. 由
闭集的定义得 Ec 为闭集.

证法二：设 E 是开集，则 E = E̊，由闭包、开核对偶关系，得 Ec = (E̊)c = Ec，可见

Ec 是闭集.

由于开集和并集的这种对偶关系，在许多情形下，我们将闭集看作是开集派生出来的概

念. 也就是说，如果定义了开集，闭集也就随之确定.

定理 8. 任意多个开集的并仍是开集，有限多个开集的交仍是开集.

证明. 第一部分显然. 对第二部分，有限多个开集的交仍是开集总能递归为两个开集的交仍
是开集. 故只需证明两个开集的交的情况.
设 G1, G2 为开集，任取 P0 ∈ G1∩G2.因 P0 ∈ Gi(i = 1, 2)，故存在 Ui(P0) ⊂ Gi(i = 1, 2).

由邻域的基本性质 (2)，存在 U3(P0) ⊂ U1(P0)∩U2(P0)，从而 U3(P0) ⊂ G1 ∩G2，可见 P0 是

G1 ∩G2 的内点.
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注. 任意多个开集的交不一定是开集. 例如

Gn =

(
−1− 1

n
, 1 +

1

n

)
, n = 1, 2, · · · ,

每个 Gn 是开集，但
∞⋂
n=1

Gn = [−1, 1] 不是开集.

定理 9. 任意多个闭集的交仍为闭集，有限多个闭集的并仍为闭集.

证明. 利用 De Morgan 公式.
设 Λ = {1, 2, · · · }，Fi, i ∈ Λ（或 i = 1, 2, · · · ,m）是闭集，则由开集和并集的对偶关系

知 F c
i 是开集，从而由定理8知，

⋃
i∈Λ

F c
i（或

m⋂
i=1

F c
i）也是开集，由 De Morgan 公式有

⋂
i∈Λ

Fi = (
⋃
i∈Λ

F c
i )

c 或
m⋃
i=1

Fi = (
m⋂
i=1

F c
i )

c,

故再由开集和并集的对偶关系可知
⋂
i∈Λ

Fi 或
m⋃
i=1

Fi 是闭集.

注. 任意多个闭集的并不一定是闭集. 例如

Fn =

[
1

n
, 1− 1

n

]
, n = 3, 4, · · · ,

每个 Fn 是闭集，但
∞⋃
n=3

Fn = (0, 1) 不是闭集.

性质 2. 设 F1, F2 是 R 中两个互不相交的闭集，则存在两个互不相交的开集 G1, G2，使

G1 ⊃ F1, G2 ⊃ F2.

在数学分析中我们已经学习了以下形式的 Heine-Borel 有限覆盖定理：设 I 是 Rn 中的

闭区间，M 是一族开区间，它覆盖了 I，则在M 中一定存在有限多个开区间，它们同样覆

盖了 I.
我们下面要把上述定理推广成更一般的形式.

定理 10 (Heine-Borel 定理). 设 F 是一个有界闭集，M 是一族开集，它覆盖了 F，则在M
中一定存在有限多个开集，它们同样覆盖了 F .

证明. 因 F 是有界闭集，所以在 Rn 中存在闭区间 I 包含 F . 记 D 为由 M 中的全体开集

与开集 F c 一起组成的新开集族，则 D 覆盖了 Rn，因此也覆盖了 I. 对于 I 中任一点 P，

存在 D 中开集 UP，使得 P ∈ UP，因而存在开区间 IP ⊂ UP，并且 P ∈ IP，所以开区间

族 {IP |P ∈ I} 覆盖了 I. 由数学分析中的有限覆盖定理，在这族开区间中存在有限个开区
间，设为 IP1 , IP2 , · · · , IPm 仍然覆盖了 I，则由 F ⊂ I，及 IPi

⊂ UPi
(i = 1, 2, · · · ,m)，得

F ⊂
m⋃
i=1

UPi
. 如果开集 F c 不在这 m 个开集中，则 UP1 , UP2 , · · · , UPm 覆盖了 F，定理得证；

否则从这 m 个开集中去掉 F c，因为 F c 与 F 不相交，所以剩下的 m − 1 个开集仍然覆盖

了 F .
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定义 15 (紧集). 设 M 是度量空间 X 中一集合，M 是 X 中任一族覆盖了 M 的开集，如

果必可从M 中选出有限个开集仍然覆盖 M，则称 M 为 X 中的紧集.

由 Heine-Borel 定理知 Rn 中的有界闭集必为紧集，是否 Rn 中的紧集都是有界闭集呢？

答案是肯定的，我们有以下定理.

定理 11. 设 M 是 Rn 中的紧集，则 M 是 Rn 中的有界闭集.

证明. 设点 Q ∈ M c，对于 M 中的任意一点 P，由于 P ̸= Q，由邻域性质，存在 δP > 0，使

得

U(P, δP ) ∩ U(Q, δP ) = ∅.

显然开集族 {U(P, δP )|P ∈ M} 覆盖了 M，由于 M 是紧集，因此存在有限个邻域

U(Pi, δPi
)(i = 1, 2, · · · ,m)，使得

M ⊂
m⋃
i=1

U(Pi, δPi
) (1)

由此立即可知 M 是有界集. 又令

δ = min{δP1 , δP2 , · · · , δPm},

则 δ > 0，并且 U(Q, δ) ∩ U(Pi, δi) = ∅(i = 1, 2, · · · ,m)，由1式得 U(Q, δ) ∩M = ∅，因此
Q 不是 M 的聚点，所以 M ′ ∩M c = ∅，这说明 M ′ ⊂ M，即 M 是闭集.

注. 上述定理说明了 Rn 中紧集和有界闭集是一致的. 但是在一般的度量空间中，紧集一定
是有界闭集（与上述定理证明相类似），但有界闭集不一定是紧集.

定义 16 (自密集). 设 E ⊂ Rn，如果 E ⊂ E ′，就称 E 是自密集.

注. 换句话说，当集合中每点都是这个集的聚点时，这个集是自密集. 另一个说法是没有孤
立点的集是自密集.

例如，空集是自密集，R 中有理数全体组成的集是自密集.

定义 17 (完备集). 设 E ⊂ Rn，如果 E = E ′，就称 E 是完备集或完全集.

可以看出，完备集就是自密闭集，即没有孤立点的闭集. 例如，空集是完备集，R 中任
一闭区间 [a, b] 及全直线都是完备集.
下面我们简单介绍直线上（即 R 中）开集与闭集的构造.
在直线上，开区间是开集，但是开集不一定是开区间，它往往是一系列开区间的并集.

为研究直线上开集的结构，我们先引入构成区间的概念.
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定义 18 (构成区间). 设 G 是直线上的开集，如果开区间 (α, β) ⊂ G，而且端点 α, β /∈ G，

那么称 (α, β) 为 G 的构成区间.

定理 12 (开集构造定理). 直线上任一个非空开集可以表示成至多可数个互不相交的构成区
间的并.

证明.

既然闭集的余集是开集，那么从开集的构造可以引入余区间的概念.

定义 19 (余区间). 设 A 是直线上的闭集，称 A 的余集 Ac 的构成区间为 A 的余区间或邻接

区间.

我们得到闭集的构造如下：

定理 13. 直线上的闭集 F 或者是全直线，或者是从直线上挖掉至多可数个互不相交的开区

间所得到的集.

由孤立点的定义很容易知道，直线上点集 A 的孤立点必是包含在 A 的余集中的某两个

开区间的公共端点. 因此，闭集的孤立点一定是它的两个余区间的公共端点. 完备集是没有
孤立点的闭集，所以，完备集就是没有相邻接的余区间的闭集.

4 Cantor 三分集
下面我们将讨论 Cantor 三分疏朗集，这是实分析中的一个重要概念，也常作为反例出

现. 为此我们先给出疏朗集和稠密集的定义.

定义 20 (稠密和疏朗). 设 E ⊂ Rn，

1. 设 F ⊂ Rn，若对任意 x ∈ F 和任意邻域 U(x)，U(x) ∩E ̸= ∅，则称 E 在 F 中稠密.

2. 若对任意 x ∈ Rn 和任意邻域 U(x)，存在 U(y) ⊂ U(x) ∩Ec，则称 E 是疏朗集或无处

稠密集.

例如有限点集或收敛可数列都是疏朗集，有理点集 Qn 在 Rn 中稠密.

定义 21 (Cantor 三分集). 将 E0 = [0, 1] 三等分，去掉中间的开区间，剩下两个闭区间，记

这两个闭区间的并为 E1，再把剩下的两个闭区间分别三等分，分别去掉中间的开区间，剩

下 22 个闭区间，记这些闭区间的并为 E2. 以此类推，当进行到第 n 次时，一共去掉 2n−1 个

开区间，剩下 2n 个长度为 3−n 的相互隔离的闭区间，记这些闭区间的并为 En. 如此继续下
去，就从 [0, 1] 中去掉了可数多个互不相交且没有公共端点的开区间. 由定理13，剩下的必是
一个闭集，称它为 Cantor 三分集，记为 P .
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下面列举了 Cantor 集 P 的一些性质.

性质 3. 1. P 是完备集.

2. P 没有内点.

3. P 是零测集.

4. P 的基数为 ℵ.

综上所述，我们将 Cantor 三分集的特点归纳为：它是一个测度为零且基数为 ℵ 的疏朗
完备集.
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第二部分 Lebesgue 测度论

虽然我们在小学时期就学习了长度、面积等相关概念，但事实上我们从未严格定义过长

度、面积和体积. 下面我们尝试定义这些概念.
我们可以把“长度”看作是 1 维实空间 R（即实数轴）的一个子集类 X（R 的每个子

集不一定都有“长度”）到实数域的一个映射 m. 我们首先规定

m([a, b]) := b− a.

其中 a ⩽ b. 这表明任何闭区间 [a, b] 的长度为 b − a，并蕴含了实数轴上任意一点的长度为

零. 然后我们可以列出几条公理（姑且称它们为公理）：设有实数轴上的一些点集构成的集类
M，对于每个 E ∈ M，都对应一个实数 m，有以下性质：

1. 非负性：m(E) ⩾ 0；

2. 有限可加性：若 E1, E2, · · · , En 两两不相交，则 m

(
n⋃

i=1

Ei

)
=

n∑
i=1

m(Ei)；

3. 正则性：m([a, b]) = b− a.

若集合 A 可通过平面上的正交变换（平面的正交变换即为平移、旋转、反射以及它们的乘

积）变成了 B，则称 A 和 B 全等或合同. 我们规定，m(A) = m(B) 当且仅当 A ∼= B.
由于任意一点的长度都是零，由可加性公理可知开区间 (a, b) 的长度也是 b− a，半开半

闭区间的长度亦然. 为了让整个实数轴也有长度，我们规定 m 可以取到 +∞.
类似地，我们可以把面积看作是 2 维实空间 R2（即实平面）的一个子集类 X 到实数域

R 的一个映射 m. 我们首先规定一个邻边长分别为 a 和 b 的矩形 A 的面积为 a · b, a, b ⩾ 0.
这蕴含了线段的面积为零. 以上的三条定理可以“原封不动”地来刻画面积. 依次下去，还
可以进一步把长度、面积的概念推广到体积以及 n 维 Euclid 空间 Rn 中. 事实上物理中的
功 (work)，位移 (displacement)，冲量 (impulse) 都满足以上三条公理. 此外，我们从长度公
理中仅能求出有限个区间的并的长度，对于无限个点集的并，长度公理就无能为力了. 因此，
我们可以考虑用一个统一的概念来描述长度、面积等等，并设法扩充其测量的范围，这就引

出了测度 (measure) 的概念.
显然，一下子推广到不可数无穷多个区间的长度是不现实的，我们退而求其次，考虑可

数个区间的” 长度”，就有 Lebesgue 提出的测度公理：
实数轴上的一些点集构成的集类M，对于每个 E ∈ M，都对应一个实数 m，满足：

1. 非负性：m(E) ⩾ 0；

2. 可数可加性：若 E1, E2, · · · , En, · · · 两两不相交，则 m

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

m(Ei)；

3. 正则性：m([a, b]) = b− a.
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我们提出以下问题：满足 Lebesgue 测度公理且在集类M 上定义的实函数 m(E) 是否存在？

M 由哪些集合构成？是否每个集合都有测度？这就是本章要讨论的内容.

5 Lebesgue 外测度
定义 22 (Lebesgue 外测度). 设 E ⊂ Rn，定义 E 的 Lebesgue 外测度为

m∗E = inf{
∞∑
i=1

|In|,
∞∑
i=1

In ⊃ E}

其中 In 是开域.

外测度具有以下三条基本性质：

定理 14. 1. 非负性：m∗E ⩽ 0，规定 m∗∅ = 0；

2. 单调性：设 A ⊂ B，则 m∗A ⩽ m∗B；

3. 次可数可加性：m∗
(

∞⋃
i=1

Ei

)
⩽

∞∑
i=1

m∗(Ei).

证明. (1) 显然成立.
(2) 的证明. 设 A ⊂ B，则任一列覆盖 B 的开域 {In} 一定也是覆盖 A 的，因而

m∗A ⩽
∞∑
i=1

|In|,

对所有能覆盖 B 的开域列取下确界即得

m∗A ⩽ inf
∞∑
i=1

|Ii| = m∗B.

(3)的证明.任给 ε > 0，由 Lebesgue外测度定义，对每个 n都应有一列开区间 In,1, In,2, · · · , In,m, · · ·，
使 En ⊂

∞⋃
m=1

In,m 且

∞∑
m=1

|In,m| ⩽ m∗En +
ε

2n.

从而
∞⋃
n=1

En ⊂
∞⋃

n,m=1

In,m,

且
∞∑

n,m=1

|In,m| =
∞∑
n=1

∞∑
m=1

|In,m| ⩽
∞∑
n=1

(
m∗En +

ε

2n

)
=

∞∑
n=1

m∗En + ε.
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可见

m∗

(
∞⋃
n=1

En

)
⩽

∞∑
n,m=1

|In,m| ⩽
∞∑
n=1

m∗En + ε.

由于 ε 的任意性，得

m∗

(
∞⋃
i=1

Ei

)
⩽

∞∑
i=1

m∗(Ei).

定理 15. 设区间 I，则 m∗I = |I|.

证明. 1. 设 I 是闭区间. 对于任给的 ε > 0，存在开区间 I ′，使得 I ⊂ I ′ 且

|I ′| < |I|+ ε.

由外测度定义，m∗I < |I|+ ε，由 ε 的任意性，有

m∗I ⩽ |I|.

现在来证明 m∗I ⩾ |I|. 对于任给 ε > 0，存在一列开区间 {Ii}，使 I ⊂
∞⋃
i=1

Ii，且

∞∑
i=1

|Ii| < m∗I + ε.

由 Heine-Borel 有限覆盖定理，在 {Ii} 中存在有限多个区间，不妨设为 I1, I2, · · · , In，
使得 I ⊂

n⋃
i=1

Ii.

因为 I =
n⋃

i=1

(I ∩ Ii)，于此 I ∩ Ii 为区间，由初等几何易知

|I| ⩽
n∑

i=1

|I ∩ Ii|,

故

|I| ⩽
n∑

i=1

|I ∩ Ii| ⩽
n∑

i=1

|Ii| < m∗I + ε.

由于 ε 的任意性，即得

|I| ⩽ m∗I.

于是 m∗I = |I|.

2. 设 I 为任意区间. 作闭区间 I1, I2 使 I1 ⊂ I ⊂ I2 且

|I2| − ε < |I| < |I1|+ ε
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（I2 可取为 I 的闭包 I），则

|I| − ε ⩽ |I1| = m∗I1 ⩽ m∗I ⩽ m∗I2 = |I2| < |I|+ ε.

由于 ε > 0 的任意性，得

m∗I = |I|.

6 Lebesgue 可测集
在5节中，我们定义了 Lebesgue 外测度，它的一个优点是任何集合都有外测度，但是外

测度只具有次可数可加性，不具有可数可加性.这意味着，如果把外测度当作测度看，使得任
何集合都有测度，这是办不到的. 这启发我们思考能否对外测度 m∗ 的定义域进行限制，即

设法在 Rn 中找出一个集类M，使得M 中的集合满足 Lebesgue 测度公理.
首先，M 对某些集合运算应该是封闭的. 例如对M 中的集合作可数并（当然对有限并

也成立，只需在后面添加可数个空集即可）、作交或作差运算后仍在M 中，而且对M 中一

列互不相交的集合 {Ei}，应当满足可数可加性：

m∗

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

m∗Ei.

其次，由 Lebesgue 的测度公理 (3)，自然应该要求M 包含 Rn 中的所有有限开域. 又
由于 Rn 是一列有限开区间的可列并，所以M 也应该包括 Rn.

想要从 Rn 中挑出集类M，我们只需附加一个判断 R中的集合 E 属于M的条件即可.
我们试从可数可加性条件来思考.
设 E ⊂ Rn. 如果 E ∈ M，由于 Rn 中任何开区间 I 都属于M，由M 的运算封闭性，

则 I ∩E, I ∩Ec 都应该属于M. 但由 (I ∩E)∩ (I ∩Ec) = ∅，I = (I ∩E)∪ (I ∩Ec)，所以

由可数可加性，应该有

m∗I = m∗(I ∩ E) +m∗(I ∩ Ec). (2)

反之，如果存在某个开区间 I，使2式不成立，则 E 自然不应该属于M. 由上可见，对于 Rn

中点集 E 是否属于M，我们可以用2是否对 Rn 中任何开区间成立来判断. 事实上，我们有
下列结论.

引理 1. 设 E ⊂ Rn，则2式对 Rn 中任何开区间 I 都成立的充要条件是对 Rn 中的任何点集

T 都有

m∗T = m∗(T ∩ E) +m∗(T ∩ Ec). (3)
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证明. 充分性显然成立. 下证必要性. 设 T 为 Rn 中的任意集合，则由外测度定义，对于任何

ε > 0，有一列开区间 {In} 使得

T ⊂
∞⋃
i=1

Ii, 且

∞∑
i=1

|Ii| ⩽ m∗T + ε.

但由于

T ∩ E ⊂
∞⋃
i=1

(Ii ∩ E), T ∩ Ec ⊂
∞⋃
i=1

(Ii ∩ Ec),

故

m∗(T ∩ E) ⩽
∞∑
i=1

m∗(Ii ∩ E),

m∗(T ∩ Ec) ⩽
∞∑
i=1

m∗(Ii ∩ Ec).

从而

m∗(T ∩ E) +m∗(T ∩ Ec) ⩽
∞∑
i=1

m∗(Ii ∩ E) +
∞∑
i=1

m∗(Ii ∩ Ec)

=
∞∑
i=1

[m∗(Ii ∩ E) +m∗(Ii ∩ Ec)]

=
∞∑
i=1

|Ii| ⩽ m∗T + ε.

由于 ε 的任意性，即得

m∗(T ∩ E) +m∗(T ∩ Ec) ⩽ m∗T.

另一方面，由 Lebesgue 外测度的次可加性，有

m∗(T ∩ E) +m∗(T ∩ Ec) ⩾ m∗T.

故

m∗(T ∩ E) +m∗(T ∩ Ec) = m∗T.

注. 这个引理是由 Carathéodory 给出的，通常我们称3式为 Carathéodory 条件.

现在，我们终于可以给出 Lebesgue 可测的定义.

定义 23 (Lebesgue 可测). 设 E 是 Rn 中的点集，如果对任一点集 T 都有

m∗T = m∗(T ∩ E) +m∗(T ∩ Ec),

则称 E 是 Lebesgue 可测的，也称为 L 可测. 这时 E 的 Lebesgue 外测度 m∗E 即称为 E 的

Lebesgue 测度，记为 mE. Lebesgue 可测集全体记为M.
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由上述定义，我们可以得出 Lebesgue 测度的若干性质.

定理 16. 集合 E 可测的充要条件是对于任意 A ⊂ E, B ⊂ Ec，总有

m∗(A ∪B) = m∗A+m∗B.

证明. 必要性 取 T = A ∪ B，则 T ∩ E = A, T ∩ Ec = B，所以

m∗(A ∪B) = m∗T = m∗(T ∩ E) +m∗(T ∩ Ec) = m∗A+m∗B.

充分性 对于任意 T，令 A = T ∩E，B = T ∩Ec，则 A ⊂ E, B ⊂ Ec 且 A∪B = T，

因此

m∗T = m∗(A ∪ B) = m∗A+m∗B = m∗(T ∩ E) +m∗(T ∩ Ec).

定理 17 (补集的可测性). S 可测的充要条件是 Sc 可测.

证明. 事实上，对于任意的 T，

m∗T = m∗(T ∩ S) +m∗(T ∩ Sc) = m∗(T ∩ (Sc)c) +m∗(T ∩ Sc).

定理 18 (并集的可测性). 设 S1, S2 都可测，则 S1 ∪ S2 也可测，并且当 S1 ∩ S2 = ∅ 时，对
于任意集合 T 总有

m∗ [T ∩ (S1 ∪ S2)] = m∗(T ∩ S1) +m∗(T ∩ S2).

证明. 首先证明 S1 ∪ S2 的可测性，即证对于任意 T 总有

m∗T = m∗(T ∩ (S1 ∪ S2)) +m∗(T ∩ (S1 ∪ S2)
c).

事实上，有

m∗T = m∗(T ∩ S1) +m∗(T ∩ Sc
1) (S1 可测)

= m∗(T ∩ S1) +m∗ [(T ∩ Sc
1) ∩ S2] +m∗ [(T ∩ Sc

1) ∩ Sc
2] (S2 可测)

由 De Morgan 公式，
m∗ [(T ∩ Sc

1) ∩ Sc
2] = m∗ [T ∩ (S1 ∪ S2)

c]

又因 S1 可测，且 T ∩ S1 ⊂ S1, (T ∩ Sc
1) ∩ S2 ⊂ Sc

1，故由定理16，有

m∗(T ∩ S1) +m∗ [(T ∩ Sc
1) ∩ S2] = m∗ [T ∩ (S1 ∪ (Sc

1 ∩ S2))] = m∗ [T ∩ (S1 ∪ S2)] ,
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整理，即得

m∗T = m∗(T ∩ (S1 ∪ S2)) +m∗(T ∩ (S1 ∪ S2)
c).

其次当 S1 ∩ S2 = ∅ 时，因 S1 可测，且 T ∩ S1 ⊂ S1, T ∩ S2 ⊂ Sc
1，故由定理16，有

m∗ [T ∩ (S1 ∪ S2)] = m∗(T ∩ S1) +m∗(T ∩ S2).

推论 1 (有限并的可测性). 设 Si (i = 1, 2, · · · , n)都可测，则
n⋃

i=1

Si 也可测，并且当 Si∩Sj =

∅ (i ̸= j) 时，对于任何集合 T 总有

m∗

(
T ∩

(
n⋃

i=1

Si

))
=

n∑
i=1

m∗(T ∩ Si).

定理 19 (交集的可测性). 设 S1, S2 都可测，则 S1 ∩ S2 也可测.

证明. 因为 S1 ∩ S2 = [(S1 ∩ S2)
c]c = [Sc

1 ∪ Sc
2]

c，这就转化为了补集和并集的可测性结论.

推论 2 (有限交的可测性). 设 Si (i = 1, 2, · · · , n) 都可测，则
n⋂

i=1

Si 也可测.

定理 20 (差集的可测性). 设 S1, S2 都可测，则 S1\S2 也可测.

证明. 因为 S1\S2 = S1 ∩ Sc
2，这就转化为了交集和补集的可测性结论.

定理 21 (可数可加性). 设 {Si} 是一列互不相交的可测集，则
∞⋃
i=1

Si 也可测，且

m

(
∞⋃
i=1

Si

)
=

∞∑
i=1

mSi.

证明. 首先证明
∞⋃
i=1

Si 的可测性. 由有限并的可测性推论，对任意 n，
n⋃

i=1

Si 可测，故对于任

意 T 总有

m∗T = m∗

[
T ∩

(
n⋃

i=1

Si

)]
+m∗

[
T ∩

(
n⋃

i=1

Si

)c]

⩾ m∗

[
T ∩

(
n⋃

i=1

Si

)]
+m∗

[
T ∩

(
∞⋃
i=1

Si

)c]
(外测度的单调性)

=
n∑

i=1

m∗(T ∩ Si) +m∗

[
T ∩

(
∞⋃
i=1

Si

)c]
. (有限并的可测性)

令 n → ∞ 得

m∗T ⩾
∞∑
i=1

m∗(T ∩ Si) +m∗

[
T ∩

(
∞⋃
i=1

Si

)c]
. (4)



6 LEBESGUE 可测集 19

由外测度的次可数可加性，故有

m∗T ⩾ m∗

[
T ∩

(
∞⋃
i=1

Si

)]
+m∗

[
T ∩

(
∞⋃
i=1

Si

)c]
.

另一方面由于

T =

[
T ∩

(
∞⋃
i=1

Si

)]
∪

[
T ∩

(
∞⋃
i=1

Si

)c]
,

又有

m∗T ⩽ m∗

[
T ∩

(
∞⋃
i=1

Si

)]
+m∗

[
T ∩

(
∞⋃
i=1

Si

)c]
.

因此

m∗T = m∗

[
T ∩

(
∞⋃
i=1

Si

)]
+m∗

[
T ∩

(
∞⋃
i=1

Si

)c]
.

这就证明了
∞⋃
i=1

Si 的可测性. 在4式中，令 T =
∞⋃
i=1

Si，这时由于

(
∞⋃
i=1

Si

)
∩ Si = Si，便得

m

(
∞⋃
i=1

Si

)
⩾

∞∑
i=1

mSi.

另一方面，由外测度的次可数可加性，

m

(
∞⋃
i=1

Si

)
⩽

∞∑
i=1

mSi.

故

m

(
∞⋃
i=1

Si

)
=

∞∑
i=1

mSi.

推论 3 (可数并的可测性). 设 {Si} 是一列可测集合，则
∞⋃
i=1

Si 也可测.

证明. 因
∞⋃
i=1

Si 可表示为互不相交的集合的并：

∞⋃
i=1

Si = S1 ∪ (S2\S1) ∪ [S3\(S1 ∪ S2)] ∪ · · · ,

由有限并、差、可数可加性结论即得.

推论 4 (可数交的可测性). 设 {Si} 是一列可测集合，则
∞⋂
i=1

Si 也可测.

证明. 因
(

∞⋂
i=1

Si

)c

=
∞⋃
i=1

Sc
i，应用补与可数并的结论即得.
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由上述性质的讨论，我们可知，Lebesgue 可测集对可数并、可数交以及差集余集的运算
都是封闭的. 此外，定理21表明了 Lebesgue 测度具有可数可加性，它是满足 Lebesgue 测度
公理的. 下面，我们再介绍几个性质.

定理 22. 设 {Si} 是一列递增的可测集合

S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · ,

令 S =
∞⋃
i=1

Si = lim
n→∞

Sn，则

mS = lim
n→∞

mSn.

证明. 因有
S = S1 ∪ (S2\S1) ∪ (S3\S2) ∪ · · · ∪ (Sn\Sn−1) ∪ · · · ,

其中各被并项都可测且互不相交，由 Lebesgue 测度的可数可加性，有（令 S0 = ∅）

mS =
∞∑
i=1

m(Si\Si−1) = lim
n→∞

n∑
i=1

m(Si\Si−1)

= lim
n→∞

m

[
n⋃

i=1

(Si\Si−1)

]
= lim

n→∞
mSn.

定理 23. 设 {Si} 是一列递降的可测集合

S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ · · · ,

令 S =
∞⋂
i=1

Si = lim
n→∞

Sn，则当 mS1 < ∞ 时，

mS = lim
n→∞

mSn.

证明. 由于 Sn 可测，则可数交 S 也可测. 又因 Sn 递降，从而 {S1\Sn} 递增，故由定理22有

lim
n→∞

m [S1\Sn] = m

[
∞⋃
i=1

(S1\Sn)

]
= m(S1\S).

因 mS1 < ∞ 及
(S1\Sn) ∪ Sn = S1,

m(S1\Sn) +mSn = mS1,

有

m(S1\S) = lim
n→∞

m(S1\Sn) = mS1 − lim
n→∞

mSn.
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由于

m(S1\S) = mS1 −mS,

故

mS = lim
n→∞

mSn.

注. 条件 mS1 < ∞ 是必要的.

定理 24 (平移不变性). 对任意实数 α，定义映射 τα : x → x+α, x ∈ Rn.则对任何集 E ⊂ Rn，

有 m∗E = m∗(ταE)，且当 E 为 Lebesgue 可测时，ταE 也 Lebesgue 可测（且测度不变）.

证明. 对任何一列开域 {Ii}，E ⊂
∞⋃
i=1

Ii，同时就有 ταIi 亦为开域，以及 ταE ⊂
∞⋃
i=1

(ταIi)，所

以

m∗E = inf
{

∞∑
i=1

|Ii| : E ⊂
∞⋃
i=1

Ii

}
⩾ m∗(ταE).

但 ταE 再平移 τ−α 后就是 E，所以 m∗(ταE) ⩾,∗ E. 这样就得到 m∗E = m∗(ταE).
如果 E 为 Lebesgue 可测，那么对于任何 T ⊂ Rn，有

m∗T = m∗(T ∩ E) +m∗(T ∩ Ec).

由于 τα(T ∩ E) = ταT ∩ ταE, τα(T ∩ Ec) = ταT ∩ ταE
c，因此从上式得到

m∗(ταT ) = m∗(ταT ∩ ταE) +m∗(ταT ∩ ταE
c),

而上式中 ταT 为任意集，因此 ταE 为 Lebesgue 可测.

定理说明，集 E ⊂ Rn 经过平移后，它的外测度不变，对于 Lebesgue 可测集，平移后
仍为 Lebesgue 可测. 这个性质称为 Lebesgue 测度的平移不变性.

用类似的方法还可以证明 Lebesgue 测度的反射不变性.

定理 25 (反射不变性). 定义映射 τ : x → −x, x ∈ Rn. 则对任何集 E ⊂ Rn，有 m∗E =

m∗(τE)，且当 E 为 Lebesgue 可测时，τE 也 Lebesgue 可测（且测度不变）.

证明不再赘述.

7 可测集类

这一节我们介绍常见的可测集.

定理 26. 1. 凡外测度为零的集皆可测，称为零测度集或零测集；
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2. 零测集的任何子集仍为零测集；

3. 至多可数个零测集的并仍为零测集.

用 Lebesgue 测度的定义与简单性质即可证明，这里不再赘述.

定理 27 (区间皆可测). 区间 I 都是可测集，且 mI = |I|.

证明. 设 I0 是异于区间 I 的任一开区间，则

|I0| = m∗(I0 ∩ I) +m∗(I0 ∩ Ic).

事实上，在 R 中显然，在 R2 中由于 I0 ∩ I 为区间，而 I0 ∩ Ic 可以分解成至多四个不相交

的区间 Ii, i = 1, 2, 3, 4，从而可证

m∗(I0 ∩ Ic) ⩽
4∑

i=1

|Ii|,

因此

m∗(I0 ∩ I) +m∗(I0 ∩ Ic) ⩽ |I0|,

另一方面，反向不等式总成立，于是

m∗(I0 ∩ I) +m∗(I0 ∩ Ic) = |I0|,

Rn 情形仿此.
由 Carathéodory 引理及 m∗I0 = |I0|，对 Rn 中任意点集 T 都有

m∗T = m∗(T ∩ I) +m∗(T ∩ Ic).

从而 I 可测.

定理 28. 凡开集、闭集皆可测.

证明. 任何非空开集可表示为至多可数个区间的并，而区间是可测的. 开集既可测，闭集作
为开集的余自然也可测.

为了进一步拓广可测集类，我们给出下面的定义.

定义 24 (σ 代数). 设 Ω 是由 Rn 的一些子集组成的集类，如果 Ω 满足条件

1. (包含空集)∅ ∈ Ω；

2. (在补集下封闭) 若 E ∈ Ω，则 Ec ∈ Ω；

3. (在可数并下封闭) 若 En ∈ Ω, n = 1, 2, · · ·，则
∞⋃
n=1

En ∈ Ω.
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则称 Ω 是 Rn 的一个 σ 代数.

可以看出，Rn 中所有 Lebesgue 可测集全体组成的集类 M 是一个 σ 代数（称之为

Lebesgue 代数）.

定义 25 (测度). 设 Ω 是 Rn 上的一个 σ 代数.如果定义在 Ω 上的非负值集函数 µ满足条件

1. µ(∅) = 0；

2. 若 En ∈ Ω, n = 1, 2, · · ·，且任意 n ̸= m, En ∩ Em = ∅，有

µ

(
∞⋃
n=1

En

)
∞∑
n=1

µ(En),

则称 µ 是 Ω 上的（正）测度.

易见，Lebesgue 测度 m 是定义在 σ 代数上的测度.
由 σ 代数的定义易知：如果 {Ωα} 是 Rn 上的一族 σ 代数，则它们的交集

⋂
α

Ωα 也是 σ

代数.

定义 26 (集类产生的 σ 代数). 设 Σ 是 Rn 的一个子集类，则称所有包含 Σ 的 σ 代数的交

集为 Σ 产生的 σ 代数.

由于 Rn 全体子集组成的子集类是包含 Σ 的 σ 代数，因此包含 Σ 的 σ 代数不是空集，

并且是包含 Σ 的最小的 σ 代数.

定义 27 (Borel 代数). 由 Rn 中全体开集组成的子集类生成的 σ 代数，记为 B，称为 Borel
代数，Borel 代数里的元素称为 Borel 集.

因为开集都是 Lebesgue 可测集，因此 B ⊂ M，因而有以下定理.

定理 29. 凡 Borel 集都是 Lebesgue 可测集.

定义 28 (测度空间). 若 Ω 是 Rn 上的一个 σ 代数，µ 是 Ω 上的测度，则称 (Rn, Ω, µ) 为测

度空间.

例如，上述 (Rn,M,m) 和 (Rn,B,m) 都是测度空间.

定义 29. 设集合 G 可表示为一列开集 {Gi} 的交集：

G =
∞⋂
i=1

Gi,

则称 G 为 Gδ 型集.
设集合 F 可表示为一列闭集 {Fi} 的并集：

F =
∞⋃
i=1

Fi,

则称 F 为 Fδ 型集.
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显然 Gδ 型集及 Fδ 型集都是 Borel 集.
我们已经知道，B ⊂ M，即 Borel 集都是 Lebesgue 可测集. 但反之不成立. 我们下面将

讨论 Lebesgue 可测集合类中除了 Borel 集之外，还存在什么样的集合.

定理 30. 设 E 是任一可测集，则一定存在 Gδ 型集 G，使 G ⊃ E，且 m(G\E) = 0.

证明. (1) 先证：对于任意 ε > 0，存在开集 G，使 G ⊃ E，且 m(G\E) < ε.
先设 mE < ∞，则由测度定义，有一列开区间 {Ii}(i = 1, 2, · · · )，使

∞⋃
i=1

Ii ⊃ E，且

∞∑
i=1

|Ii| < mE + ε.

令 G =
∞⋃
i=1

Ii，则 G 为开集，G ⊃ E，且

mE ⩽ mG ⩽
∞∑
i=1

mIi =
∞∑
i=1

|Ii| < mE + ε.

因此，mG−mE < ε（这里用到 mE < ∞），从而 m(G\E) < ε.

其次，设 mE = ∞，这时 E 必为无界集，但它总可表示成可数多个互不相交的有界可

测集的并，即 E =
∞⋃
n=1

En(mEn < ∞)，对每个 En 应用上面结果，可找到开集 Gn ⊃ En 使

m(Gn\En) <
ε

2n
.

令 G =
∞⋃
n=1

Gn，则 G 为开集，G ⊃ E，且

G\E =
∞⋃
n=1

Gn\
∞⋃
n=1

En ⊂
∞⋃
n=1

(Gn\En),

m(G\E) ⩽
∞∑
n=1

m(Gn\En) < ε.

(2) 依次取 εn =
1

n
, n = 1, 2, · · ·，由上述证明，存在开集 Gn ⊃ E，使 m(Gn\E) <

1

n
.

令 G =
∞⋂
n=1

Gn，则 G 为 Gδ 型集，G ⊃ E，且

m(G\E) ⩽ m(Gn\E) <
1

n
, n = 1, 2, · · · ,

故 m(G\E) = 0.

定理 31. 设 E 是任一可测集，则一定存在 Fδ 型集 F，使 F ⊂ E，且 m(E\F ) = 0.
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证明. 因 Ec 也可测，由定理30可知，存在 Gδ 型集 G ⊃ Ec，使 m(G\Ec) = 0.
令 F = Gc，则 F 为 Fδ 型集，F ⊂ E，且

m(E\F ) = m(E\Gc) = m(G\Ec) = 0.

以上两个定理说明了只要有了全部 Gδ 型集或 Fδ 型集（它们只是 Borel集的一部分）和
全部 Lebesgue 零测集，就可以得到一切 Lebesgue 可测集.

定理 32 (正则性). 若 E 是一可测集，则

1. mE = inf{mG|G是开集, E ⊂ G}(外正则性)；

2. mE = sup{mK|K是紧集, K ⊂ E}(内正则性).

证明. (1) 的证明：若 mE = ∞，则对任意 G ⊃ E，mG = ∞，因此 (1) 成立.
若 mE < ∞，则由定理30的证明，对任意 ε > 0，存在开集 G ⊃ E, m(G\E) < ε，因此

mG = m(G\E) +mE < mE + ε.

由确界定义，(1) 成立.
(2) 的证明：若 E 有界，则存在有界闭区间 I，使得 E ⊂ I. 对任意 ε > 0，存在开集

G ⊃ I\E，使得 m(G\(I\E)) < ε. 令 K = I\G，则 K 是紧集，且

E\K = E ∩G ⊂ G\(I\E),

故

m(E\K) < ε.

于是当 E 有界时，(2) 成立.
若 E 无界，对任意 n，令

En = {x|d(x, 0) < n} ∩ E,

则 {En} 单调可测， lim
n→∞

En = E，且 lim
n→∞

mEn = mE. 由上述证明，存在紧集 Kn ⊂ En，

mEn −
1

n
⩽ mKn ⩽ mEn, n = 1, 2, · · · ,

由此得到

lim
n→∞

mKn = mE.

因此无论 mE = ∞ 或 mE < ∞，(2) 成立.
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